

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Medical apparatus

Course

Field of study

Biomedical Engineering

Area of study (specialization)

-

Level of study

First-cycle studies

Form of study

full-time

Year/Semester

3/5

Profile of study

general academic Course offered in

Polish

Requirements

compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 15

Tutorials Projects/seminars

30

Number of credit points

5

Lecturers

Responsible for the course/lecturer: 60-

Dawid Kucharski, PhD Eng.

Division of Metrology and Measurement

Systems,

Institute of Mechanical Technology,

Faculty of Mechanical Engineering,

Poznan University of Technology,

Jana Pawla II 24 Street,

60-965 Poznan.

Room 129.

tel: +48 61 665 3569

fax: fax. +48 61 665 3595

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Responsible for the course/lecturer:

Prerequisites

Basic knowledge of physics, biophysics, mechanics, electronics and biology

Course objective

Knowledge of the construction, principles of operation and mode of exploitation of medical devices: diagnostic and therapeutic.

Course-related learning outcomes

Knowledge

A student can characterize the basic diagnostic medical devices and selected therapeutic medical devices.

A student is able to:

characterize the methods of proper and safe use of medical equipment;

describe the sources of biological signals registered by medical devices.

Skills

A student can make a critical analysis of a medical device operation.

A student is able to evaluate the existing technical solutions used in the medical device.

Student is able to design a simple device, medical facility, a system typical for biomedical engineering.

Social competences

A student knows the essence of understanding the medical aspects of engineering activities, constant updating of his knowledge.

A student can collaborate with a medical staff.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Summative assessment:

Course final exam (written, 5 questions)

Laboratory: written/oral answer + lab reports; passing rules: positive assessments for all lab exercises

Project: positive assessment for a student project

Programme content

Lectures scope:

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 1. General characteristics, current status and development trends of medical apparatus.
- 2. Devices for measuring selected properties of the circulatory system.
- 3. Electrocardiographs.
- 4. Stimulators and cardiostimulators.
- 5. Devices for testing the properties of the respiratory system.
- 6. Diagnostic equipment.
- 7. Rehabilitation devices.
- 8. Support devices for people with disabilities.

Lab scope:

- 1. Blood pressure noninvasive measurement.
- 2. Heart properties and cardiovascular measurements.
- 3. Blood vessels ultrasonography.
- 4. Internal organs ultrasonography.
- 5. Measurements of mechanical properties of the respiratory system.
- 6. Laser therapy.

Project: Project of a research-didactic system for biological / medical measurements of the human body properties.

Teaching methods

Lectures: oral presentation with illustrated examples on a blackboard, calculations.

Laboratory: lab experiments, tasks solving, discussions.

Project: solving of practical problems, working in a group, discussions.

Bibliography

Basic

- 1. M. Nałęcz (red.), Biocybernetyka i inżynieria biomedyczna 2000, tom 2, Biopomiary, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2001.
- 2. G. Pawlicki, T. Pałko, N. Golnik, B Gwiazdowska, L. Królicki, M. Nałęcz (red.), Biocybernetyka i inżynieria biomedyczna 2000, tom 9, Fizyka Medyczna, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2005.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 3. D. Kucharski, L. Marciniak-Podsadna, E. Stachowska, Laboratorium aparatury medycznej, Wydawnictwo Politechniki Poznańskiej, Poznań, 2017.
- 4. Instrukcje obsługi urządzeń medycznych w laboratorium dydaktycznym.

Additional

- 1. L. Chmielewski, J.L. Kulikowski, A. Nowakowski, M. Nałęcz (red.), Biocybernetyka i inżynieria biomedyczna 2000, tom 8, Obrazowanie biomedyczne, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2003.
- 2. J.G.Webster (red.), Medical Instrumentation. Application and Design, John Wiley & Sons, inc. New York 1998
- 3. Inżynieria biomedyczna, kwartalnik Polskiego Towarzystwa Inżynierii Biomedycznej

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	5,0
Classes requiring direct contact with the teacher	65	3,0
Student's own work (literature studies, preparation for	60	2,0
laboratory tutorials, preparation for exam, project preparation) ¹		

1

¹ delete or add other activities as appropriate